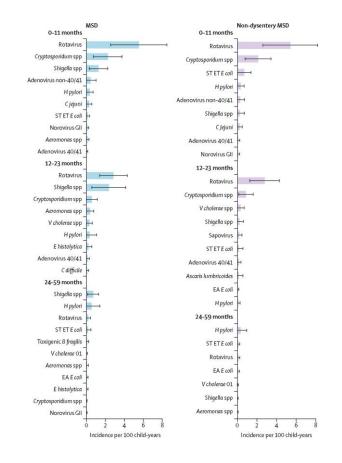
FOURTEENTH INTERNATIONAL ROTAVIRUS SYMPOSIUM MARCH 14-16 2023 BALLINDONESIA

Learn more on www.sabin.org

Profiles and influence of maternal and infant histo-blood group antigens (HBGA) on oral rotavirus vaccine (ROTARIX[®]) immunogenicity in Zambia

Adriace Chauwa, BSc MSc Immunology (candidate) 14th International Rotavirus Symposium

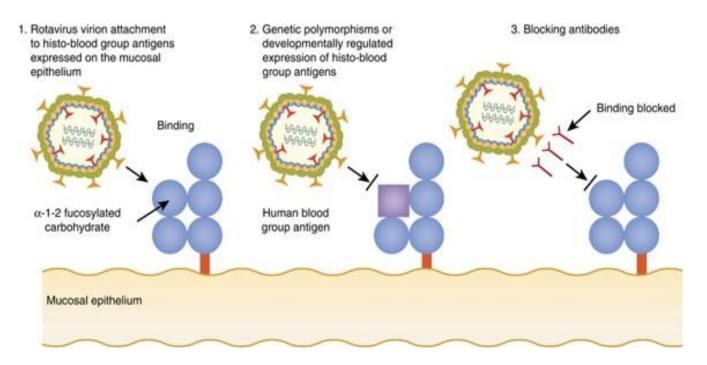

Background

Global Burden of Disease study (GBD 2019)

B 0-9 years 1 Neonatal disorders 23.0 (22.0 to 24.1) 1 Neonatal disorders 32.4 (30.7 to 34.1) -36.2 (-45.4 to -24.7) -35.4 (-44.8 to -23.8) 2 Lower respiratory infections 17.0 (14.9 to 19.7) 11.6 (10.5 to 12.6) -69.1 (-75.9 to -60.9) -69.6 (-76.3 to -61.6) 3 Diarrhoeal diseases 13·1 (10·7 to 15·1) 3 Diarrhoeal diseases 9-3 (7-9 to 10-8) -67.8 (-75.3 to -57.2) -68.5 (-75.9 to -58.4) 4 Congonital hirth daf 4 Congenital birth defects 6.6 (4.6 to 10.0) 8.6 (7.4 to 10.7) -41.6 (-54.6 to -17.4) -40.1 (-55.1 to -17.9) 5 Malaria 5.7 (2.0 to 11.8) 6.4 (3.3 to 10.8) -36-9 (-61-4 to -2-2) -38.5 (-63.1 to -6.5) 5 Measles 6 Malaria 4.6 (2.5 to 7.5) 6 Meningitis 2.1 (1.8 to 2.5) -59.7 (-68.1 to -49.3) -61.0 (-69.2 to -51.1) 7 Protein-energy malnutrition 4.1 (3.1 to 5.5) 7 Dietary iron deficiency 2.0 (1.3 to 2.9) -0.8 (-5.3 to 3.6) -8.2 (-12.3 to -4.1) 8 Meningitis 2.3 (2.0 to 2.7) 8 Protein-energy malnutrition 2.0 (1.7 to 2.3) -78.1 (-85.0 to -68.9) -78.3 (-85.5 to -69.9) 9 Whooping coug 1.9 (0.8 to 3.8) 9 Whooping cough 1.9 (0.9 to 3.3) -54.7 (-74.7 to -17.3) -53.2 (-75.6 to -20.4) 10 Drowning 1.8 (1.5 to 2.1) 10 STIs 1.4 (0.5 to 2.8) -16-3 (-30-7 to 1-7) -14.9 (-30.1 to 2.5) 11 Tuberculosis 1.8 (1.5 to 2.1) 11 Measles 1-3 (0-4 to 2-7) -90.0 (-92.6 to -86.9) -90.5 (-92.9 to -87.6) 12 Tetanus 1.7 (1.4 to 1.9 12 Road injuries 1.1 (1.0 to 1.4) -61.5 (-68.7 to -45.0) -63.7 (-70.8 to -48.8) 13 Road injuries 1.3 (1.1 to 1.5) 13 Tuberculosis -74.5 (-79.8 to -67.8) -75.5 (-80.6 to -69.2) 14 Dietary iron deficiency 14 HIV/AIDS 0.9 (0.6 to 1.3 1.0 (0.9 to 1.2) -18.6 (-35.6 to 3.6) -25.0 (-35.3 to -13.6) 68-3 (27-4 to 121-2) 15 STIs 0.7 (0.2 to 1.5) 15 iNTS 61.4 (20.6 to 109.3) 16 Typhoid and paratyphoid 0.7 (0.3 to 1.3) 16 Drowning 0.9 (0.8 to 1.1) -77.6 (-81.3 to -70.1) -79.0 (-82.6 to -72.2) 17 Foreign body 0.6 (0.5 to 0.7 17 Haemoglobinopathies 0.9 (0.7 to 1.0) -10.3 (-30.3 to 22.5) -13.7 (-34.3 to 14.7) 0.6 (0.5 to 0.7) 18 Typhoid and paratyphoid 0.8 (0.4 to 1.5) -46.7 (-59.1 to -31.1) -50.7 (-62.5 to -36.9) 19 Asthma 19 Encephalitis 0.5 (0.4 to 0.8) -32.2 (-46.2 to -14.5) -37.5 (-50.0 to -21.5) 0.5 (0.4 to 0.7) 0.5 (0.4 to 0.5) 20 Foreign body -63.6 (-70.2 to -57.1) 20 Acute hepatitis 0.5 (0.4 to 0.5) -62.9 (-69.6 to -56.2) 21 Haemoglobinopathies 0-4 (0-3 to 0-6) 21 EMBID 0.5 (0.4 to 0.6) -18.9 (-33.3 to -0.9) -22.1 (-36.1 to -6.0) 22 Leukaemia 0.4 (0.3 to 0.6) 22 Sudden infant death 0.5 (0.2 to 1.0) -50.6 (-61.6 to -29.8) -46.9 (-61.7 to -30.0) 23 Sudden infant death 0.4 (0.2 to 0.9) 23 Idiopathic epilepsy 0.5 (0.3 to 0.6) -30.7 (-45.8 to 3.6) -34.0 (-49.1 to -3.8) 24 Asthma 0.4 (0.3 to 0.5) 24 Other unspecified infectious 0.4 (0.3 to 0.6) -28.4 (-48.3 to 7.8) -29.3 (-50.3 to 3.3) 25 Falls 25 Dermatitis 0.4 (0.2 to 0.7) 2.7 (1.7 to 3.7) -6.0 (-6.9 to -5.1) 0.4 (0.3 to 0.5) 28 Idiopathic epilepsy 0-3 (0-2 to 0-4) 26 Leukaemia 0.4 (0.4 to 0.5) -54.8 (-67.7 to -32.9) -55.3 (-69.5 to -37.0) 30 Other unspecified infectious 0-3 (0-2 to 0-4) 27 Falls 0.4 (0.3 to 0.5) -47.2 (-67.0 to -18.0) -48.3 (-68.7 to -22.6) 33 iNTS 0-3 (0-1 to 0-4) 28 Encephalitis 0.4 (0.3 to 0.5) -67.6 (-76.7 to -47.6) -68-5 (-77-9 to -50-2) 34 EMBID 0-3 (0-2 to 0-3) 32 Tetanus 0.3 (0.3 to 0.5) -91.3 (-93.8 to -85.6) -91.2 (-93.8 to -85.6) 44 Dermatitis 0.2 (0.1 to 0.3) ' 39 Acute hepatitis 0.3 (0.2 to 0.3) -73·1 (-81·7 to -59·1) -74·1 (-82·6 to -61·1)

Communicable, maternal, neonatal, and nutritional diseases
Non-communicable diseases
Injuries

Global Enteric Multicenter study (GEMS 2019)


Background Cont'd

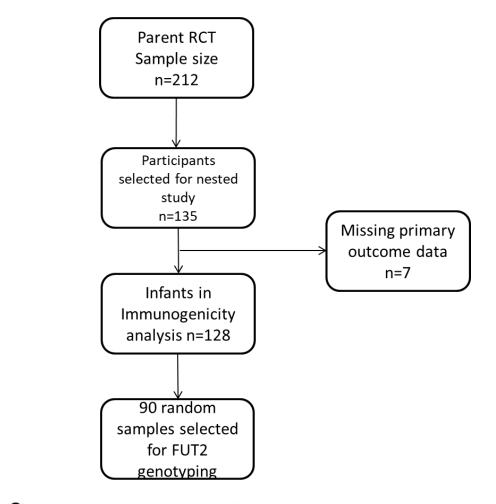
- Oral live-attenuated RV vaccines (e.g. Rotarix[™]) are available lifesaving tools but exhibit low immunogenicity in LMIC children. (Church et al., 2017)
- Variations in host genetic susceptibility to RV via histo-blood group antigens (HBGA) has been proposed as plausible explanation (Lee at el.,2018)
- FUT2 gene (secretor gene) regulates expression and ability to secrete these HBGA (e.g. on mucosal epithelial cells, in breast milk & saliva)

(Cooling, 2015)

Rationale: Polymorphisms in HBGA gene and secretor status may influence susceptibility to RV infection and live oral RV vaccines

RV can use HBGA as receptors during infection

Figure 1. (Gozalbo-Rovira et al., 2019; Huang et al., 2012)



Aim: To profile HBGA genotypes and phenotypes in a mother-infant pair vaccination cohort and assess influence on Rotarix[™] vaccine immunogenicity

Study sample collection

Figure 2. Analysis Flow Chart

Laboratory Materials & Methods

Assays

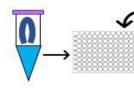
HGBA Phenotyping

Lewis A, B antibodies (ELISA)

Blood Group A, B, H antibodies (ELISA)

Lectin (UEA-1) (ELISA)

FUT2 Genotyping


RFLP_PCR

Serology

Rotavirus-IgA antibody (ELISA)

CIDRZ

HBGA Phenotyping using infant saliva and breastmilk using ELISA

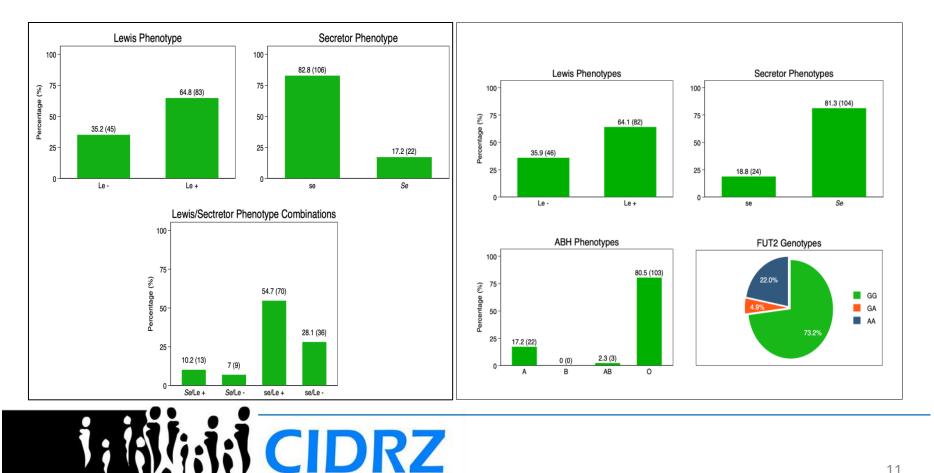
Lewis, blood group A, B antibodies, Lectin

~1ml saliva/breastmilk

HBGA genotyping on buffy coat using RFLP-PCR

Table 1. Baseline Characteristics andInfant Seroconversion

	Seroconverted				
	Total Population (N=128)	No (n = 91, 71.1%)	Yes (n = 37, 28.9%))	P-value	
	n (%)	n (%)	n (%)		
Infant Characteristics					
Age (Weeks)					
Median (IQR)	6 (6-6)	6 (6-6)	6 (6-6)	0.442	
Mean (Std.Dev)	6 (0.6)	6 (0.6)	5.9 (0.7)		
Sex					
Male	69 (53.9)	51 (73.9)	18 (26)	0.447	
Female	59 (46.1)	40 (67.7)	19 (32.2)		
Treatment					
Control	57 (44.5)	41 (71.9)	16 (28)	0.852	
Intervention	71 (55.5)	50 (70.4)	21 (29.5)		
Feeding					
Exclusive Breastfeeding	122 (95.3)	86 (70.4)	36 (29.5)	0.672	
Mixed Feeding	6 (4.7)	5 (83.3)	1 (16.6)		
Birthwieght (kg)					
< 2.5	5 (3.9)	3 (60)	2 (40)	0.626	
\geq 2.5	123 (96.1)	88 (71.5)	35 (28.4)		
HIV Exposure					
Not Exposed	89 (69.5)	62 (69.6)	27 (30.3)	0.590	
Exposed	39 (30.5)	28 (73.6)	10 (26.3)		
Nutritional Status					
Malnourished					
No (WHZ \geq -2)	126 (98.4)	89 (70.6)	37 (29.3)	1.000	
Yes (WHZ < -2)	2 (1.6)	2 (100)	0 (0)		
Stunted					
No (HAZ ≥ -2)	107 (83.6)	78 (72.8)	29 (27.1)	0.310	
Yes (HAZ < -2)	21 (16.4)	13 (61.9)	8 (38)		
Wasted					
No (WAZ \geq -2)	119 (93.0)	86 (72.2)	33 (27.7)	0.281	
Yes (WAZ < -2)	9 (7.0)	5 (55.5)	4 (44.4)		


9

	Seroconverted			
Mother's Characteristics				
Age				
<20	20 (15.6)	15 (75)	5 (25)	0.080
20-24	45 (35.2)	37 (82.2)	8 (17.7)	
25-29	34 (26.6)	19 (55.8)	15 (44.1)	
<u>≥</u> 30	29 (22.7)	20 (68.9)	9 (31)	
Highest Education Level				
None	6 (4.7)	4 (66.7)	2 (33.3)	0.470
Primary	40 (31.3)	25 (62.5)	15 (37.5)	
Secondary	81 (63.3)	61 (75.3)	20 (24.6)	
Tertiary	1 (0.8)	1 (100)	0 (0)	
Water Source				
Piped into house/yard	45 (35.2)	33 (75)	12 (25)	0.882
Protected well	5 (3.9)	4 (80)	1 (20)	
Public borehole/tap and pipe	78 (60.9)	54 (80)	24 (20)	
Shared Toilet Facility				
No	24 (18.8)	17 (70.8)	7 (29.1)	0.975
Yes	104 (81.3)	74 (71.1)	30 (28.8)	
Type of Toilet Faciity				
Flushing toilet	26 (20.3)	17 (65.4)	9 (34.6)	0.476
Pit laterine	102 (79.7)	74 (72.6)	28 (27.5)	

Figure 3. Maternal and Infant HBGA Frequency Distribution

Figure 3(a). Maternal Lewis and Secretor profiles

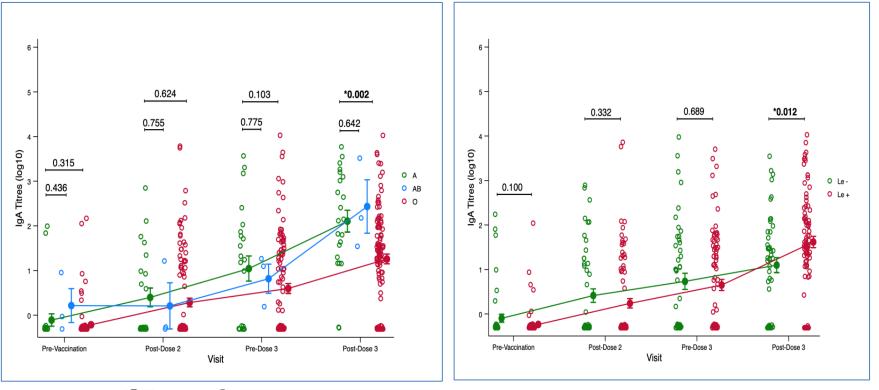

Figure 3(b). Infant ABO, Lewis and Secretor HBGA profiles

Figure 4. Maternal and Infant HBGA Frequency Distribution

Figure 4(a). Two-sided t-test Trend plot for infant RV-IgA titre by infant ABO phenotype

Figure 4(b). Two-sided t-test Trend plot for infant RV-IgA titre by Lewis phenotype

Table 2. Maternal and infant HBGA profiles and antirotavirus IgA titres 1- month post ROTARIX[®] dose 2

(N = 128) (Overall)							
Characteristics	Number of mother-infant pairs	GMTs	ANOVA P-value	GMT Ratio	ANOVA P-value	N Seroconvers n (n = 37, 28.9%	P-value
	(% of total)	GMT (95%		GMR (95% CI)		n (%)	
		CI)					
Infant							
Infant HBGA Phenotype							
A	22 (17.2)	2.5 (0.9, 6.8)	0.874	ref		7 (31.8)	0.929
AB	3 (2.3)	1.6 (0, 270.6)		0.6 (0.1, 5.6)	0.69	0 1 (33.3)	
0	103 (80.5)	1.9 (1.2, 3)		0.8 (0.3, 2.2)	0.62) 29 (28.2)	
Infant Lewis Phenotype							
Le- (Le a-b-)	46 (35.9)	2.6 (1.3, 5.2)	0.332	ref		14 (30.4)	0.775
Le+ (Le a+b-,Le a-b+, or Le a+b+)	82 (64.1)	1.7 (1.1, 2.8)		0.7 (0.3, 1.5)	0.34	1 23 (28.2)	
Secretor Phenotype							
Non-secretor (se)	24 (18.8)	1.3 (0.6, 2.8)	0.279	ref		5 (20.8)	0.24
Secretor Phenotype (Se)	104 (81.3)	2.2 (1.4, 3.5)		1.7 (0.7, 4.2)	0.21	3 32 (30.8)	
Infant FUT2 Genotype*							
Homozygous secretor (GG)	60 (46.9)	1.4 (0.8, 2.5)	0.093	ref		15 (25.0)	0.289
Heterozygous secretor (GA)	4 (3.1)	5.6 (0, 1426.5))	3.9 (0.2, 85.1)	0.385	2 (50.0)	
Non-secretor (AA)	18 (14.1)	4.9 (1.5, 16.3)		3.4 (1.0, 11.9)	0.050	7 (38.9)	
Missing	46 (35.9)	2 (1, 3.8)		1.4 (0.6, 3.2)	0.447	13 (28.3)	
Mother							
Lewis Phenotype							
Le- (Le a-b-)	45 (35.2)	1.6 (0.9, 2.8)	0.358	ref		13 (28.9)	0.997
Le+ (Le a+b-,Le a-b+, or Le a+b+)	83 (64.8)	2.3 (1.4, 3.9)		1.5 (0.7, 3.2)	0.33) 24 (28.9)	
Secretor Phenotype							
Non-secretor (se)	106 (82.8)	2 (1.3, 3.1)	0.850	ref		32 (30.2)	0.336
Secretor Phenotype (Se)	22 (17.2)	1.8 (0.7, 5.2)		0.9 (0.3, 2.6)	0.85	2 5 (22.7)	-Activate
		_ 0					Go to Sett

I I I I I I CIDRZ

Table 3. Maternal and infant HBGA profiles and seroconversion 1- month post ROTARIX[®] dose 2

Characteristics	Crude Odds Ratio (95% Cl)	P-value	
Infant HBGA Phenotype			
A	ref		
AB	1.1 (0.1, 13.9)	0.958	
0	0.8 (0.3, 2.3)	0.731	
Infant Lewis Phenotype			
Le- (Le a-b-)	ref		
Le+ (Le a+b-,Le a-b+, or Le a+b+)	0.9 (0.4, 2)	0.775	
Infant Secretor Phenotype			
Non-secretor (se)	ref		
Secretor Phenotype (Se)	1.7 (0.6, 4.9)	0.337	
Infant FUT2 Genotype			
Homozygous secretor (GG)	ref		
Heterozygous secretor (GA)	3 (0.4, 23.2)	0.292	
Non-secretor (G428A)	1.9 (0.6, 5.8)	0.255	
Mother Lewis Phenotype			
Le- (Le a-b-)	ref		
Le+ (Le a+b-,Le a-b+, or Le a+b+)	1.0 (0.4, 2.2)	0.997	
Mother Secretor Phenotype			
Non-secretor (se)	ref		
Secretor Phenotype (Se)	0.7 (0.2, 2.0)	0.484	
Treatment Arm			
Control (MR)	ref		
Intervention (ROTARIX [®] +MR)	1.1 (0.5, 2.3)	0.852	

Table 4. Maternal and Infant HBGA profiles and anti-rotavirus IgA titres at 12-months

Characteristics	V12 GMTs	ANOVA, P-value	GMT Ratio (95% CI)	P-value
	GMT (95% CI)			
	-			
Infant				
Infant ABO Phenotype				
Α	5.02 (4.14, 6.07)	0.002	ref	
AB	5.28 (1.86, 15)		0.59 (0.10, 3.47)	0.560
0	3.7 (3.35, 4.08)		0.36 (0.09, 1.41)	0.140
Infant Lewis Phenotype				
Le- (Le a-b-)	3.57 (3.03, 4.22)	0.015	ref	
Le+ (Le a+b-,Le a-b+, or Le a+b+)	4.17 (3.75, 4.63)		0.83 (0.31, 2.23)	0.705
Secretor Phenotype				
Non-secretor (se)	2.89 (2.26, 3.71)	< 0.001	ref	
Secretor Phenotype (Se)	4.14 (3.78, 4.54)		1.94 (0.59, 6.4)	0.276
Infant FUT2 Genotype				
Secretor (GG)/(GA)	3.95 (3.45, 4.52)	0.063	ref	
Non-secretor (AA)	3.24 (2.44, 4.31)		1.66 (0.96, 2.83)	0.543
Mother				
Lewis Phenotype				
Le- (Le a-b-)	4.02 (3.52, 4.58)	0.521	ref	
Le+ (Le a+b-,Le a-b+, or Le a+b+)	3.95 (3.51, 4.44)		1.09 (0.41, 2.88)	0.863
Secretor Phenotype				
Non-secretor (se)	4.08 (3.72, 4.48)	0.368	ref	
Secretor Phenotype (Se)	3.45 (2.64, 4.51)		0.83 (0.25, 2.70)	0.751
Treatment Arm				
Control (MR)	4.08 (3.56, 4.67)	0.260	ref	
Intervention (ROTARIX®+MR)	3.88 (3.44, 4.37)		1.39 (0.55, 3.49)	0.479

Discussion

- Infant ABO phenotypes showed a higher frequency of group O, followed by A, AB
- A higher frequency of secretors than non-secretor infants (both phenotype and FUT2 genotype)
- Infant Lewis profile showed higher frequency of Lewis(+) than Lewis-null phenotype

 Maternal HBGA profiles showed a higher frequency of nonsecretors than secretors and more Lewis(+) than Lewis-null phenotype

Discussion Cont'd

 Infant blood group AB showed the highest increase in RV-IgA titres between 9 and 12-months

 Infant Lewis(+) phenotype also showed a significantly higher increase in RV-IgA titres at 12-months compared to Lewis-null phenotype

• Infant secretor phenotype also showed a statistically higher increase in GMTs at 12-months compared to non-secretors

Conclusion

- Maternal and infant HBGAs were not associated with Rotarix[®] immunogenicity in early infant life.
- Infant HBGAs antigens seem to influence rotavirus-IgA antibody titres much later in infant life.
- Increase in titres most likely as a result of natural infection
- Further robust studies are needed to comprehensively establish reasons for low Rotarix[®] immunogenicity in early infant life
- Next study approaches to focus on alternative RV vaccines, OR improvements on currently existing oral, live-attenuated vaccines

Acknowledgements

• Funders

• European and Developing Countries Clinical Trials Partnership (EDCTP) Grant No: TMA2016SF-1511

Project Support

- The Bill and Melinda Gates Foundation (grant No. OPP1162810 BMGF: 00631000362)
- Contract Research Organisation
- CIDRZ-Enteric Disease and Vaccines Research Unit (EDVRU)
- Sabin Vaccine Institute
- Collaborating Institution
- The University of Zambia (UNZA)
- Co-authors and contributors

Thank You!

